Systemic Responses of Barley to the 3-hydroxy-decanoyl-homoserine Lactone Producing Plant Beneficial Endophyte Acidovorax radicis N35
نویسندگان
چکیده
Quorum sensing auto-inducers of the N-acyl homoserine lactone (AHL) type produced by Gram-negative bacteria have different effects on plants including stimulation on root growth and/or priming or acquirement of systemic resistance in plants. In this communication the influence of AHL production of the plant growth promoting endophytic rhizosphere bacterium Acidovorax radicis N35 on barley seedlings was investigated. A. radicis N35 produces 3-hydroxy-C10-homoserine lactone (3-OH-C10-HSL) as the major AHL compound. To study the influence of this QS autoinducer on the interaction with barley, the araI-biosynthesis gene was deleted. The comparison of inoculation effects of the A. radicis N35 wild type and the araI mutant resulted in remarkable differences. While the N35 wild type colonized plant roots effectively in microcolonies, the araI mutant occurred at the root surface as single cells. Furthermore, in a mixed inoculum the wild type was much more prevalent in colonization than the araI mutant documenting that the araI mutation affected root colonization. Nevertheless, a significant plant growth promoting effect could be shown after inoculation of barley with the wild type and the araI mutant in soil after 2 months cultivation. While A. radicis N35 wild type showed only a very weak induction of early defense responses in plant RNA expression analysis, the araI mutant caused increased expression of flavonoid biosynthesis genes. This was corroborated by the accumulation of several flavonoid compounds such as saponarin and lutonarin in leaves of root inoculated barley seedlings. Thus, although the exact role of the flavonoids in this plant response is not clear yet, it can be concluded, that the synthesis of AHLs by A. radicis has implications on the perception by the host plant barley and thereby contributes to the establishment and function of the bacteria-plant interaction.
منابع مشابه
Phenotypic variation in Acidovorax radicisN35 influences plant growth promotion.
Acidovorax radicis N35, isolated from surface-sterilized wheat roots (Triticum aestivum), showed irreversible phenotypic variation in nutrient broth, resulting in a differing colony morphology. In addition to the wild-type form (rough colony type), a phenotypic variant form (smooth colony type) appeared at a frequency of 3.2 × 10(-3) per cell per generation on NB agar plates. In contrast to th...
متن کاملAcidovorax radicis sp. nov., a wheat-root-colonizing bacterium.
Strain N35(T) was isolated from surface-sterilized wheat roots and is a Gram-negative, aerobic, motile straight rod. Strain N35(T) tested oxidase-positive and catalase-negative and grew optimally at pH 7.0, 30 °C and in the absence of NaCl. 16S rRNA gene sequence analysis showed over 97 % sequence similarity to strains of the environmental species Acidovorax delafieldii, A. facilis, A. defluvii...
متن کاملIdentification, synthesis and regulatory function of the N-acylated homoserine lactone signals produced by Pseudomonas chlororaphis HT66
BACKGROUND Pseudomonas chlororaphis HT66 isolated from the rice rhizosphere is an important plant growth-promoting rhizobacteria that produce phenazine-1-carboxamide (PCN) in high yield. Phenazine production is regulated by a quorum sensing (QS) system that involves the N-acylated homoserine lactones (AHLs)-a prevalent type of QS molecule. RESULTS Three QS signals were detected by thin layer ...
متن کاملInfluence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean
Bacteria are able to communicate with each other and sense their environment in a population density dependent mechanism known as quorum sensing (QS). N-acyl-homoserine lactones (AHLs) are the QS signaling compounds of Gram-negative bacteria which are frequent colonizers of rhizospheres. While cross-kingdom signaling and AHL-dependent gene expression in plants has been confirmed, the responses ...
متن کاملQuorum Sensing Activity of Mesorhizobium sp. F7 Isolated from Potable Water
We isolated a bacterial isolate (F7) from potable water. The strain was identified as Mesorhizobium sp. by 16S rDNA gene phylogenetic analysis and screened for N-acyl homoserine lactone (AHL) production by an AHL biosensor. The AHL profile of the isolate was further analyzed using high resolution triple quadrupole liquid chromatography mass spectrometry (LC/MS) which confirmed the production of...
متن کامل